Author(s): Manikandan N., Usha Kingsly Devi K.

Email(s): manimeek@gmail.com , ush_sophi@rediffmail.com

DOI: Not Available

Address: Manikandan N.1, Usha Kingsly Devi K.2
1Student, Applied Electronics, Regional Centre Anna University, Tirunelveli, Tamilnadu, India
2Assistant Professor, Applied Electronics, Regional Centre of Anna University, Tirunelveli, Tamilnadu, India
*Corresponding Author

Published In:   Volume - 5,      Issue - 2,     Year - 2014


ABSTRACT:
Computer-aided detection (CAD) systems are convenient for the automatic lung nodule detection in computed tomographic (CT) images, as the sheer volume of information present in CT datasets is overwhelming for radiologists to process. First, segmentation scheme is used as a preprocessing step for enhancement. Then, the nodule candidates are detected by Eigen value decomposition of hessian matrix and Multi-scale dot enhancement filtering. After the initial detection of nodule candidates using filtering technique, feature descriptors were extracted. The feature descriptor is refined using the process of wall detection and eradication. An Evolutionary Support Vector Machine (ESVM) is trained to classify nodules and non-nodules. The proposed CAD system is validated on Lung Image Database Consortium (LIDC) data. Experimental results show that the detection scheme achieves 98.3% sensitivity with only 11false positives per scan.


Cite this article:
Manikandan N., Usha Kingsly Devi K. Automatic Detection and Classification of Pulmonary Nodules on CT Images. Research J. Engineering and Tech. 5(2): April- June 2014 page 68-76.


Recomonded Articles:

Author(s): D.Vasudevan, P.Balashanmugam

DOI:         Access: Open Access Read More

Author(s): Suchita Rai, K. L. Wasewar, M. J. Chaddha, J. Mukhopadhyay

DOI:         Access: Open Access Read More

Author(s): Sony Salot, Shankar Sehgal, B.S Pabla, Harmesh Kumar

DOI: 10.5958/2321-581X.2017.00048.4         Access: Open Access Read More

Author(s): Roger Houêchéné Ahouansou, Gontrand Comlan Bagan, Pélagie Bidossessi Agbobatinkpo, Emile Adjibadé Sanya, Antoine Cokou Vianou, Djidjoho Joseph Hounhouigan

DOI: 10.5958/2321-581X.2018.00033.8         Access: Closed Access Read More

Author(s): Piyush M. Kale, S. T. Bagde

DOI:         Access: Open Access Read More

Author(s): Abhishek Nandan , Nihal Anwar Siddiqui , Prasenjit Mondal, Kanishak Chaudhary, Rishi Pandey

DOI:         Access: Open Access Read More

Author(s): S. S. K. Deepak

DOI:         Access: Open Access Read More

Author(s): Nitika Goyal, Deepam Goyal

DOI: 10.5958/2321-581X.2017.00012.5         Access: Open Access Read More

Author(s): Rajeev Kumar Dang, Deepam Goyal, SS Dhami, Amit Chauhan

DOI: 10.5958/2321-581X.2017.00023.X         Access: Open Access Read More

Author(s): Archit Roy, Vinit Shahdeo, Rajesh Kaluri

DOI: 10.5958/2321-581X.2019.00004.7         Access: Closed Access Read More

Author(s): S. Suryaprakash, Mathankumar M, Rajesh Ramachandran

DOI: 10.5958/2321-581X.2017.00045.9         Access: Open Access Read More

Author(s): Mohamed Asif Omar. A, S.M. Tauseef, Abishek Nandan

DOI: 10.5958/2321-581X.2016.00011.8         Access: Open Access Read More

Author(s): Manikanda Prasath. K, Vignesh. S

DOI: 10.5958/2321-581X.2017.00076.9         Access: Open Access Read More

Author(s): Parakkal Rajendran Dignesh, Suriya Krishnan, Valarmathi Rajasekaran, Balaraman Kumar

DOI:         Access: Open Access Read More

Author(s): S. S. Yattinahalli, S. B. Kapatkar, S.N.Mathad

DOI: 10.5958/2321-581X.2016.00024.6         Access: Open Access Read More

Author(s): Muthukumaran P*, T. Paramasivan, M. Priya, S. Abarna, P. Ramalingam and N. Saraswathy

DOI: 10.5958/2321-581X.2017.00006.X         Access: Open Access Read More

Research Journal of Engineering and Technology (RJET) is an international, peer-reviewed, research journal aiming at promoting and publishing original high quality research in all disciplines of engineering sciences and technology....... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2321-581X 


Recent Articles




Tags