Author(s): A. K. Gangrade, Vikas M. Phalle, S.S. Mantha

Email(s): , ,

DOI: 10.5958/2321-581X.2018.00016.8   

Address: A. K. Gangrade1*, Vikas M. Phalle2, S.S. Mantha3
1Research Scholar, Machine Dynamics and Vibration Laboratory, Department of Mechanical Engineering, Veermata Jijabai Technological Institute (VJTI), Mumbai 400 019, India,
1Faculty, K J Somaiya College of Engineering (KJSCE), Mumbai- 400077, India.
2 Associate Professor, Department of Mechanical Engineering, VJTI, Mumbai 400 019, India.
3 Ex-professor, Department of Mechanical Engineering, VJTI, Mumbai 400 019, India.
*Corresponding Author

Published In:   Volume - 9,      Issue - 1,     Year - 2018

In concern with the environmental impact of lubricating fluids, water-lubricated bearings have been preferred and recommended instead of conventional oil-lubricated bearingsin food and pharmaceutical industries.Conical hydrodynamic journal bearing with having the ability to support the load in radial as well as in axial direction is beneficial to use in rotating machines, i.e. turbine, compressor etc. Performance of the conical hydrodynamic journal bearing depends on many operational parameters such as aspect ratio, semi cone angle, clearance ratio, eccentricity ratio and speed. At present Computational Fluid Dynamics (CFD) models are used as an alternative to experimental methods in research for overcoming the cost and operational difficulties.In this study conical hydrodynamic journal bearing have been investigated for aspect ratio (?=0.5, 0.8, 1.0), semi cone angles (?= 00, 50, 100, 200, 300), clearance ratio (?=0.001, 0.002) and speed (N = 2000, 5000, 10000 rpm) by using Ansys Fluent software. Fluid film pressure is one of the key operating parameters for describing the operating conditions of hydrodynamic journal bearings. Load carrying capacity, fluid film thickness and stability of bearing is evaluated based on pressure developed in clearance space of bearingwith rotation of journal.It was found that numerically simulated results of water lubricated conical journal bearing are influenced by the operational parameters of bearing. Present workis useful indesign ofcompact size conical hydrodynamic journal bearingfor combined radial and axial load application to replace two separate bearings i.e. journal and thrust.

Cite this article:
A. K. Gangrade, Vikas M. Phalle, S.S. Mantha. CFD simulation of water lubricated conical hydrodynamic journal bearings . Research J. Engineering and Tech. 2018;9(1): 105-119 doi: 10.5958/2321-581X.2018.00016.8

Recomonded Articles:

Author(s): Arjun K Sunil, Anil Mahwar

DOI: 10.5958/2321-581X.2016.00029.5         Access: Open Access Read More

Author(s): A. K. Gangrade, Vikas M. Phalle, S.S. Mantha

DOI: 10.5958/2321-581X.2018.00016.8         Access: Closed Access Read More

Author(s): Sanjay Sharma, R K Awasthi

DOI: 10.5958/2321-581X.2017.00016.2         Access: Open Access Read More

Author(s): Dr V Lakshminarayanan

DOI: 10.5958/2321-581X.2017.00027.7         Access: Open Access Read More

Author(s): Muthukumaran P. M, Alamelumangai , M. Mathumitha

DOI:         Access: Open Access Read More

Author(s): Jagmeet Singh Sekhon, S.S. Verma

DOI:         Access: Open Access Read More

Research Journal of Engineering and Technology (RJET) is an international, peer-reviewed, research journal aiming at promoting and publishing original high quality research in all disciplines of engineering sciences and technology....... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2321-581X 

Recent Articles