Author(s): Indu Sharma, Neelam Guleria, Pawan Kumar

Email(s): indu.phy@cpuh.in

DOI: 10.52711/2321-581X.2022.00016   

Address: Indu Sharma1*, Neelam Guleria2, Pawan Kumar3
1Department of Physics, Career Point University Hamirpur-176041.
2Department of Physics, NSCBM Govt. College Hamirpur-177005.
3Department of Mathematics, NSCBM Govt. College Hamirpur-177005.
*Corresponding Author

Published In:   Volume - 13,      Issue - 4,     Year - 2022


ABSTRACT:
This research investigates the effects of temperature and relative humidity on UHF radio wave signals. A spectrum analyzer was used in measuring UHF signals while a digital thermometer and hygrometer was used in measuring temperature and relative humidity, respectively. From results obtained, relative humidity had no effect on UHF signal strengths while temperature had a positive correlation effect on path losses in UHF radio waves. This implies that an increase in temperature will lead to a decrease in received signal strength of UHF signals. Furthermore, a path loss propagation model for Calabar was obtained using multiple regression analysis and we believe that the result obtained in this study will be useful to radio engineers, for UHF signal propagation in the study terrain.


Cite this article:
Indu Sharma, Neelam Guleria, Pawan Kumar. Effects of temperature and relative humidity on UHF radio wave signals. Research Journal of Engineering and Technology. 2022; 13(4):107-1. doi: 10.52711/2321-581X.2022.00016

Cite(Electronic):
Indu Sharma, Neelam Guleria, Pawan Kumar. Effects of temperature and relative humidity on UHF radio wave signals. Research Journal of Engineering and Technology. 2022; 13(4):107-1. doi: 10.52711/2321-581X.2022.00016   Available on: https://ijersonline.org/AbstractView.aspx?PID=2022-13-4-3


REFERENCES
1.    Raj A. Wireless communications. Ist ed. Khanna Publishers: Delhi; 2014
2.    “IEEE 521-2002- IEEE Standard Letter Designations for Radar-Frequency Bands”. Standards.ieee.org. Retrieved 17 June 2022
3.    Rec. ITU-R V.431-8, Nomenclature of the Frequency and Wavelength Bands used in Telecommunications" https://www.itu.int/dms_pubrec/itu-r/rec/v/R-REC-V.431-8-201508-I!!PDF-E.pdf Retrieved December 31, 2021.
4.    Seybold, John S. (2005). Introduction to RF Propagation. John Wiley and Sons, Inc. New York. 349p
5.    Olatoye NO, Ekoko EC, Sani OM, Ogungbenro O. The Determination of Pathloss Model for Ultra‐High‐Frequency Television Transmission in Onitsha, Anambra state, Nigeria. International Journal of Communication Systems. 2021 ;34(5): e4716.
6.    Akinbolati A, Akinsanmi O, Ekundayo KR. Signal Strength Variation and Propagation Profiles of UHF Radio Wave Channel in Ondo state, Nigeria. International Journal of Wireless and Microwave Technologies. 2016;6(4):12-27.
7.    Akinbolati A, Joseph E, Okpala C. Propagation Curves and Pathloss Evaluation for UHF Wave (Channel 22, 479.25 MHz) within Katsina Metropolis. Fudma Journal of Sciences. 2017;1(1):189-196.
8.    Akinbolati A, Ajewole MO. Effect of some Radio Climatic Factors on Digital Terrestrial Television Signal in a Sahel Savannah City of Nigeria. Fudma Journal of Sciences. 2020 Jul 2;4(2):111-118.
9.    Boithias L. Radio Wave Propagation, McGraw-Hill. New York. 1987.
10.    Ekah, B. J., Iloke, J. and Ekah, U. J. (2022). Tropospheric Influence on Dropped Calls. Global Journal of Engineering and Technology Advances. 10(2): 83-93.
11.    Ometan OO, Omotosho TV, Adewusi MO, Akinwumi SA. Evaluation of the Variation in Wind speed during Rainfall in a Tropical Location. InIOP Conference Series: Earth and Environmental Science 2021 Feb 1 (Vol. 655, No. 1, p. 012057). IOP Publishing.
12.    Shamsan ZA, Al-Saman A. Performance of the DBS satellite receiver under the impact of rainfall and terrestrial interference. Wireless Communications and Mobile Computing. 2021;2021: 1-12.
13.    Alhilal AY, Braud T, Hui P. A Roadmap toward a Unified Space Communication Architecture. IEEE Access. 2021 Jul 5;9: 99633-50.
14.    Rathore NK, Jain NK, Shukla PK, Rawat U, Dubey R. Image Forgery Detection using Singular Value Decomposition with some Attacks. National Academy Science Letters. 2021 Aug;44(4):331-8.
15.    Alumona TL, Kelvin NN. Path loss prediction of wireless mobile communication for urban areas of Imo State, South-East region of Nigeria at 910 MHz. International Journal of Sensor Networks and Data Communications. 2015;4(1): 1-4.
16.    Ekah, U. J. and Onuu, M. U. (2022). Tropospheric Influence on Call Setup in Mobile Networks. Journal of Engineering Research and Reports. 22(2): 14-26.
17.    Ebhota VC, Isabona J, Srivastava VM. Environment-adaptation based hybrid neural network predictor for signal propagation loss prediction in cluttered and open urban microcells. Wireless Personal Communications. 2019 Feb;104(3):935-48.
18.    Ometan OO, Omotosho TV, Adewusi MO, Akinwumi SA. Evaluation of the Variation in Wind speed during Rainfall in a Tropical Location. InIOP Conference Series: Earth and Environmental Science 2021 Feb 1 (Vol. 655, No. 1, p. 012057). IOP Publishing.
19.    Isabona J. Wavelet generalized regression neural network approach for robust field strength prediction. Wireless Personal Communications. 2020 Oct;114(4):3635-53.
20.    Ekah, U. J., Adebayo A. O. and Shogo, O. E. (2022). Spatial Distribution of Frequency Modulated Signals in Uyo, Nigeria. World Journal of Advanced Engineering Technology and Sciences, 5(1): 39-46.
21.    Ewona, I. and Ekah, U. (2021). Influence of Tropospheric Variables on Signal Strengths of Mobile Networks in Calabar, Nigeria.Journal of Scientific and Engineering Research, 8(9): 137-45.
22.    Iloke, J., Utoda, R. and Ekah, U. (2018). Evaluation of Radio Wave Propagation through Foliage in Parts of Calabar, Nigeria. International Journal of Scientific & Engineering Research, 9(11): 244-249.
23.    Emeruwa, C. and Ekah, U. J. (2018). Pathloss Model Evaluation for Long Term Evolution in Owerri. International Journal of Innovative Science and Research Technology, 3(11): 491-496.
24.    Emeruwa, C. and Ekah, U. J. (2018). Investigation of the Variability of Signal strength of Wireless Services in Umuahia, Eastern Nigeria. IOSR Journal of Applied Physics, 10(3): 11-17.
25.    Imoize AL, Otuokere EM, Ajose SO, Adegbenro AO. Experimental validation of a best-fit model for predicting radio wave propagation through vegetation. Arid Zone Journal of Engineering, Technology and Environment. 2019;15(SPi2):172-86.
26.    Joshi S, Stalin S, Shukla PK, Shukla PK, Bhatt R, Bhadoria RS, Tiwari B. Unified authentication and access control for future mobile communication-based lightweight IoT systems using blockchain. Wireless Communications and Mobile Computing. 2021; 2021 https://doi.org/10.1155/2021/8621230.
27.    Ughegbe GU, Adelabu MA, Imoize AL. Experimental data on radio frequency interference in microwave links using frequency scan measurements at 6 GHz, 7 GHz, and 8 GHz. Data in Brief. 2021; 35:106916.
28.    Adelabu MA, Imoize AL, Ughegbe GU. Performance evaluation of radio frequency interference measurements from microwave links in dense urban cities. Telecom 2021; 2021(2): 328-368.
29.    Butani B, Shukla PK, Silakari S. An exhaustive survey on physical node capture attack in WSN. International Journal of Computer Applications. 2014;95(3): 32-39
30.    Abdulrahman AY, Rahman TA, Olufeagba BJ, Islam MR. Using full rainfall rate distribution for rain attenuation predictions over terrestrial microwave links in Malaysia. Signal Processing Research. 2013;2(1):25-8.
31.    Luini L, Capsoni C. A unified model for the prediction of spatial and temporal rainfall rate statistics. IEEE Transactions on Antennas and Propagation. 2013;61(10):5249-54.
32.    Mello L, Pontes MS. Unified method for the prediction of rain attenuation in satellite and terrestrial links. Journal of Microwaves, Optoelectronics and Electromagnetic Applications. 2012;11(1): 1-14.
33.    Imoize AL, Orolu K, Atayero AA. Analysis of key performance indicators of a 4G LTE network based on experimental data obtained from a densely populated smart city. Data in brief. 2020;29:105304.
34.    Imoize AL, Adegbite OD. Measurements-based performance analysis of a 4G LTE network in and around shopping malls and campus environments in Lagos Nigeria. Arid Zone Journal of Engineering, Technology and Environment. 2018;14(2):208-225.
35.    Imoize AL, Ogunfuwa TE. Propagation measurements of a 4G LTE network in Lagoon environment. Nigerian Journal of Technological Development. 2019;16(1):1-9.
36.    Ogbebor JO, Imoize AL, Atayero AA. Energy efficient design techniques in next-generation wireless communication networks: emerging trends and future directions. Wireless Communications and Mobile Computing. 2020;2020: Article ID 7235362, 19 pages
37.    Khambra G, Shukla P. Novel machine learning applications on fly ash based concrete: an overview. Materials Today: Proceedings. 2021 Jul 24.
38.    Ewona, I., Ekah. U. J., Ikoi, A.O. & Obi, E. (2022). Measurement and Performance Assessment of GSM Networks using Received Signal Level. Journal of Contemporary Research. 1(1): 88-98.
39.    Ekah. U. J., Iloke, J., Ewona, I. & Obi, E. (2022). Measurement and Performance Analysis of Signal-to-Interference Ratio in Wireless Networks. Asian Journal of Advanced Research and Reports. 16(3): 22-31.
40.    Ekah, U. J. and.Iloke, J. (2022). Performance Evaluation of UMTS Key Performance Indicators in Calabar, Nigeria. GSC Journal of Advanced Research and Reviews, 10(1): 47-52.
41.    Ekah, U. J. and Emeruwa, C. (2022). A Comparative Assessment of GSM & UMTS Networks . World Journal of Advanced Research and Reviews, 13(1): 187-196.
42.    Ekah, U. J. and Emeruwa C. (2021). Guaging of Key Performance Indicators for 2G Mobile Networks in Calabar, Nigeria. World Journal of Advanced Research and Reviews, 12(2): 157-163.
43.    Obi, E., Ekah, U. and Ewona, I. (2021). Real-Time Assessment of Cellular Network Signal Strengths in Calabar. International Journal of Engineering Sciences & Research Technology, 10(7): 47-57.
44.    Isabona J, Imoize AL, Ojo S, Lee CC, Li CT. Atmospheric Propagation Modelling for Terrestrial Radio Frequency Communication Links in a Tropical Wet and Dry Savanna Climate. Information. 2022 Mar 7; 141:1-16
45.    Ojuh DO, Isabona J. Field electromagnetic strength variability measurement and adaptive prognostic approximation with weighed least regression approach in the ultra-high radio frequency band. International Journal of Intelligent Systems & Applications, 2021;4:14-23.
46.    Isabona J, Imoize AL. Terrain-based adaption of propagation model loss parameters using non-linear square regression. Journal of Engineering and Applied Science. 2021;68(33):1-19.
47.    Isabona J, Imoize AL, Rawat P, Jamal SS, Pant B, Ojo S, Hinga SK. Realistic Prognostic Modeling of Specific Attenuation due to Rain at Microwave Frequency for Tropical Climate Region. Wireless Communications and Mobile Computing. 2022 Apr 14;2022, 1-10.https://doi.org/10.1155/2022/8209256
48.    Mmahi NO, Akinbolati A, Ikechiamaka FN, Akpaneno FA, Joseph E, Ekundayo KR. Studies on Surface Radio Refractivity over Some Selected Cities in North-Central, Nigeria. Fudma Journal of Sciences. 2021;5(4):90-9.
49.    Akinbolati A, Ajewole MO. Investigation of path loss and modeling for digital terrestrial television over Nigeria. Heliyon. 2020;6(6):e04101.
50.    Usman I, Ibrahim MN, Akeem LS, Shehu A. Effects of Radio-Climatic Variables on Signal Propagation in Kebbi State. Caliphate Journal of Science and Technology. 2020 Feb 13;2(1):18-24.
51.    Chima AI, Onyia A, Udegbe SU. The effects of atmospheric temperature and wind speed on UHF radio signal; a case Study of ESUT community and its environs in Enugu State. IOSR Journal of Applied Physics. 2018;10(2): 83-90.
52.    Suleman KO, Bello IT, Tijani LO, Ogunbode AO, Olayiwola WA. Effect of temperature and ground water on VHF radio wave propagation in tropical climate. International Journal of Scientific & Engineering Research. 2017 Jan;8(1):1391-6.
53.    Mat R, Shafie MM, Ahmad S, Umar R, Seok YB, Sabri NH. Temperature effect on the tropospheric radio signal strength for UHF band at Terengganu, Malaysia. communications. 2016; 6(5): 770-774
54.    Mat R, Sabri NH, Umar R, Ahmad S, Zafar SN, Omar A, Mustafa WA. Effect of Humidity on Tropospheric Received Signal Strength (RSS) in Ultra-High Frequency (UHF) Band. InJournal of Physics: Conference Series 2020 Apr 1 (Vol. 1529, 042048). IOP Publishing.
55.    Mat R, Hazmin SN, Umar R, Ahmad S, Zafar SN, Marhamah MS. The modelling of tropical weather effects on ultra-high frequency (UHF) radio signals using SmartPLS. InIOP Conference Series: Materials Science and Engineering 2018 Oct 1 (Vol. 440, No. 1, p. 012041). IOP Publishing.
56.    Alade MO. Investigation of the effect of ground and air temperature on very high frequency radio signals. Journal of Information Engineering and Applications. 2013;3(9):16-21.
57.    Ukhurebor KE. Influence of Meteorological Variables on UHF Radio Signal: Recent Findings for EBS, Benin City, South-South, Nigeria. Discovery, 2018, 54(269), 157-163
58.    Alade MO. (2013). Dry Hot and Cool Tropical Climate Attenuation models at VHF. International Journal of Electronics Communication and Computer Engineering, 4 (4), 1114 – 1118

Recomonded Articles:

Author(s): Suchita Rai, K. L. Wasewar, M. J. Chaddha, J. Mukhopadhyay

DOI:         Access: Open Access Read More

Author(s): R. K. Pal

DOI: 10.5958/2321-581X.2015.00068.9         Access: Open Access Read More

Author(s): Parakkal Rajendran Dignesh, Suriya Krishnan, Valarmathi Rajasekaran, Balaraman Kumar

DOI:         Access: Open Access Read More

Author(s): Harkamal Preet Singh

DOI: 10.5958/2321-581X.2016.00030.1         Access: Open Access Read More

Author(s): Mahesh Jamb, Yogesh Suryawanshi, McNiel D’Abreo, Prerna Goswami

DOI: 10.5958/2321-581X.2017.00014.9         Access: Open Access Read More

Author(s): Poonam S. Patil, R. K. Kamat, R. R. Mudholkar

DOI: 10.5958/2321-581X.2018.00006.5         Access: Open Access Read More

Author(s): Rachana Ravindra Mudholkar

DOI: 10.5958/2321-581X.2018.00034.X         Access: Open Access Read More

Author(s): Suchita Rai, K. L. Wasewar , D. H. Lataye, Kalpana Singh, M. J. Chaddha, J. Mukhopadhyay

DOI:         Access: Open Access Read More

Author(s): Muthukumaran P*, T. Paramasivan, M. Priya, S. Abarna, P. Ramalingam and N. Saraswathy

DOI: 10.5958/2321-581X.2017.00006.X         Access: Open Access Read More

Author(s): Dr V Lakshminarayanan

DOI: 10.5958/2321-581X.2017.00027.7         Access: Open Access Read More

Author(s): C. Kavitha, P. Vijayasarathi

DOI: 10.5958/2321-581X.2015.00071.9         Access: Open Access Read More

Author(s): S.R. Yamunarani, M.Dinesh kumar, B. Balachander, K.Tamilarasan, C.Muthukumaran

DOI:         Access: Open Access Read More

Author(s): J. Niranjan, Fazal Basha, G. Suganya, M. Anil Kumar, M. Seenuvasan, S. Selvanaveen

DOI:         Access: Open Access Read More

Author(s): S. N. Shivappriya, R. Dhivyapraba, A. Kalaiselvi, M. Alagumeenakshi

DOI: 10.5958/2321-581X.2017.00039.3         Access: Open Access Read More

Research Journal of Engineering and Technology (RJET) is an international, peer-reviewed, research journal aiming at promoting and publishing original high quality research in all disciplines of engineering sciences and technology....... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2321-581X 


Recent Articles




Tags