📢 Important Notice

This website has been moved to our new domain:
https://rjetonline.com

Redirecting in 10 seconds...

Go Now

Author(s): Reshma Rajesh Sawant, Srijan Kumar

Email(s): srijankumarshrivastava@gmail.com

DOI: 10.52711/2321-581X.2025.00007   

Address: Reshma Rajesh Sawant1, Srijan Kumar2* 1Masters in Business Analytics, University of Hartford, Connecticut, USA.
2Department Of Mechanical Engineering, Bhilai Institute of Technology, Durg, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 2,     Year - 2025


ABSTRACT:
This study undertakes a comparative evaluation of ML and DL models across four different datasets for the detection of financial fraud: PaySim, IEEE-CIS, BankSim, and the 2023 Kaggle Credit Card Fraud dataset. Unlike earlier works with limitations of singular datasets and/or singular families of algorithms, this research focuses on hybrid model architectures, cross-dataset generalizability, and real-world trade-offs of implementation. We test different models empirically, including Random Forest, XGBoost, SVM, CNN, LSTM, and hybrid CNN-LSTM architectures, regarding several metrics such as accuracy, recall, F1-score, AUC-ROC, and false positive rates. The result shows that LSTM-and CNN-LSTM-are best suited for temporal datasets (PaySim, IEEE-CIS), while XGBoost and Random Forest are best suited for static datasets (Kaggle, BankSim). This paper, therefore, presents a solid non-overlapping framework that financial institutions could use to adopt AI systems concerning data type, latency requirements, and accuracy needs. Furthermore, considering the escalating danger of money laundering, the paper integrates the approach developed from recent advances in graph-based and temporal deep learning models such as MAGIC and Amatriciana. These models demonstrated powerful performance in modeling financial transaction networks and detecting illicit behavior.


Cite this article:
Reshma Rajesh Sawant, Srijan Kumar. Next-Gen Financial Fraud and Money Laundering Detection Using Real and Simulated Datasets: A Comparative Study of Machine Learning, Deep Learning, and Graph Neural Networks (GNNs). Research Journal of Engineering and Technology. 2025; 16(2):73-9. doi: 10.52711/2321-581X.2025.00007

Cite(Electronic):
Reshma Rajesh Sawant, Srijan Kumar. Next-Gen Financial Fraud and Money Laundering Detection Using Real and Simulated Datasets: A Comparative Study of Machine Learning, Deep Learning, and Graph Neural Networks (GNNs). Research Journal of Engineering and Technology. 2025; 16(2):73-9. doi: 10.52711/2321-581X.2025.00007   Available on: https://ijersonline.org/AbstractView.aspx?PID=2025-16-2-3


REFERENCES:
1.    Ahmed M, Mahmood AN, Hu J. A survey of network anomaly detection techniques. J Netw Comput Appl. 2016; 60: 19–31. doi: 10.1016/j.jnca.2015.11.016
2.    Bahnsen AC, Aouada D, Stojanovic J, Ottersten B. Feature engineering strategies for credit card fraud detection. Expert Syst Appl. 2016; 51: 134–142. doi: 10.1016/j.eswa.2015.12.030
3.    Bolton RJ, Hand DJ. Statistical fraud detection: A review. Stat Sci. 2002; 17(3): 235–255. doi:10.1214/ss/1042727940
4.    Carcillo F, Le Borgne YA, Caelen O, Bontempi G. Fully Automated Fraud Detection: A Case Study. Expert Syst Appl. 2021; 150: 113290. doi: 10.1016/j.eswa.2020.113290
5.    Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Minority Over-sampling Technique. J Artif Intell Res. 2002; 16: 321–357. doi:10.1613/jair.953
6.    IEEE-CIS Fraud Detection Dataset. Kaggle. 2019. Available from: https://www.kaggle.com/competitions/ieee-fraud-detection
7.    Jurgovsky J, Granitzer M, Ziegler K, Calabretto S, Portier PE, He-Guelton L, Caelen O. Sequence classification for credit-card fraud detection. Expert Syst Appl. 2018; 100: 234–245. doi: 10.1016/j.eswa.2018.01.037
8.    Kaggle Credit Card Fraud Dataset. Kaggle. 2023. Available from: https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
9.    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553): 436–444. doi:10.1038/nature14539
10.    Lopez-Rojas E, Axelsson S. PaySim: A Financial Mobile Money Simulator for Fraud Detection. 28th Eur Model Simul Symp. 2016: 249–255. Available from: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1050337
11.    Pozzolo AD, Caelen O, Johnson RA, Bontempi G. Calibrating probability with undersampling for unbalanced classification. IEEE Symp Ser Comput Intell. 2015: 159–166. doi:10.1109/SSCI.2015.33
12.    Sebastián S, Granados J, RodrĂ­guez A. BankSim: Agent-based Simulator for Bank Transactions. Proc 27th Eur Model Simul Symp. 2015: 249–254. Available from: https://www.scitepress.org/Papers/2015/55718/55718.pdf
13.    Singh R, Zhao Y. A Survey on Real-Time Fraud Detection Using Machine Learning. J Financ Technol. 2023; 11(2): 145–161. doi:10.2139/ssrn.4366820
14.    West J, Bhattacharya M. Intelligent financial fraud detection: A comprehensive review. Comput Secur. 2016; 57:47–66. doi: 10.1016/j.cose.2015.09.005
15.    Whitrow C, Hand DJ, Juszczak P, Weston D, Adams NM. Transaction aggregation as a strategy for credit card fraud detection. Data Min Knowl Discov. 2009; 18(1): 30–55. doi:10.1007/s10618-008-0116-z
16.    ACFE. Report to the Nations: 2024 Global Study on Occupational Fraud and Abuse. Association of Certified Fraud Examiners; 2024. Available from: https://www.acfe.com/report-to-the-nations/2024/
17.    WĂłjcik F. Money Laundering Detection with Multi-Aggregation Custom Edge GIN. J Data Sci. 2025; 23(2): 145–159. doi:10.48550/arXiv.2506.00654
18.    Di Gennaro M, Panebianco F, Pianta M, Zanero S, Carminati M. Amatriciana: Exploiting Temporal GNNs for Robust and Efficient Money Laundering Detection. arXiv. 2025;2506.00654v1. doi:10.48550/arXiv.2506.00654
19.    S. Kumar, “Mathematical Modelling and Simulation of a Buffered Fault Tolerant Double Tree Network,” in 15th International Conference on Advanced Computing and Communications (ADCOM 2007), IEEE, Dec. 2007; pp. 422–433. doi: 10.1109/ADCOM.2007.62.
20.    D. Ramtake, N. Singh, S. Kumar, and V. K. Patle, “Cache Associativity Analysis of Multicore Systems,” in 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA), IEEE, Mar. 2020; pp. 1–4. doi: 10.1109/ICCSEA49143.2020.9132884.
21.    R. Patel and S. Kumar, “Visualizing Effect of Dependency in Superscalar Pipelining,” in 2018 4th International Conference on Recent Advances in Information Technology (RAIT), IEEE, Mar. 2018; pp. 1–5. doi: 10.1109/RAIT.2018.8388992.
22.    HSBC Holdings. (2020). HSBC improves AML with machine learning. Retrieved from https://www.hsbc.com/news-and-media
23.    Danske Bank. (2021). Using deep learning to fight money laundering. Retrieved from https://danskebank.com/news-and-insights
24.    ING Bank. (2022). AI and graph analytics to detect financial crime. Retrieved from https://www.ing.com/Newsroom
25.    JPMorgan Chase. (2023). AI-driven fraud and AML risk monitoring at scale. Retrieved from https://www.jpmorganchase.com/ technology

Recomonded Articles:

Author(s): Priya Rao, Abhay Kumar Tiwari

DOI: 10.5958/2321-581X.2020.00007.0         Access: Open Access Read More

Author(s): P Muralidhar, V Srihari

DOI: 10.5958/2321-581X.2015.00055.0         Access: Open Access Read More

Author(s): Rachana Ravindra Mudholkar

DOI: 10.5958/2321-581X.2018.00034.X         Access: Open Access Read More

Author(s): A. Kalai Murugan, R. Raja Prabu

DOI:         Access: Open Access Read More

Author(s): Megha Mishra, Vishnu Kumar Mishra, H.R. Sharma

DOI:         Access: Open Access Read More

Author(s): M. Venu Gopala Rao, M. Babita Jain , Purvi Shukla

DOI:         Access: Open Access Read More

Author(s): Pooja Nagpal, Shalini Bhaskar Bajaj, Aman Jatain, Sarika Chaudhary

DOI: 10.52711/2321-581X.2021.00006         Access: Open Access Read More

Author(s): Smita N. Chaudhari, Shilpa P. Mene, Umesh K. Gaikwad, Rupali M. Bora

DOI: 10.5958/2321-581X.2019.00018.7         Access: Open Access Read More

Author(s): Mandeep Singh Walia

DOI: 10.5958/2321-581X.2016.00010.6         Access: Open Access Read More

Author(s): Rajdeep Chowdhury, Saikat Ghosh

DOI:         Access: Open Access Read More

Author(s): Kalyani D. Kherde, Kanchan B. Kathane, Sachin A. Yadav, Shreekrishana A. Masne

DOI: 10.5958/2321-581X.2015.00064.1         Access: Open Access Read More

Author(s): Deepak Rao Khadatkar, Yogesh Rathore

DOI:         Access: Open Access Read More

Research Journal of Engineering and Technology (RJET) is an international, peer-reviewed, research journal aiming at promoting and publishing original high quality research in all disciplines of engineering sciences and technology....... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2321-581X 


Recent Articles




Tags